

GHG Inventory Compilation Using the IPCC Software

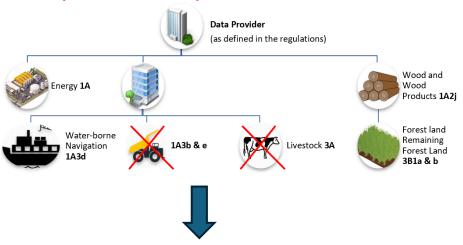
SOUTH AFRICA EXPERIENCE

Presentation outline

- Data collection
- IPCC software
- CRT tables
- Key messages

DATA VALUE CHAIN

1. DATA COLLECTION


2. INVENTORY COMPILATION (IPCC SOFTWARE)

3. CRT TABLES

Data Collection: Reporting Process (GHG Reporting Regulations)

Step 1: Define Operational Boundaries

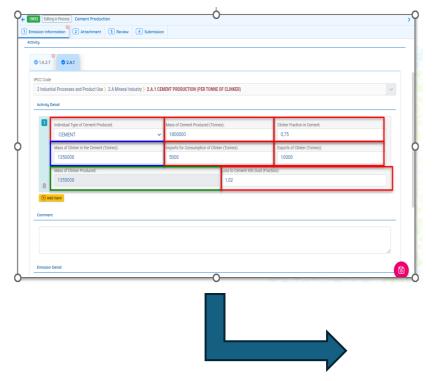
Step 2: Identify applicable IPCC activities & reporting requirements

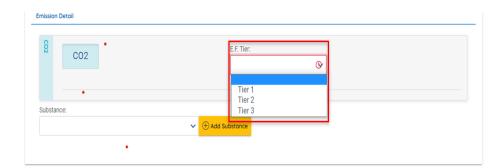
Table 24.1: IPCC classification of emissions for cement production

Sector	Relevant IPCC code/s	Definition	Relevant IPCC Gases	Tier	Methodology reference	Transitional arrangements
Cement Production	1A2f	Fuel combustion	CO ₂	<u>1,</u> 2 or 3	Section 12	Yes
		activities in the non- metallic minerals sector.	CH₄	1, 2 or 3	Section 12	No
			N ₂ O	1, 2 or 3	Section 12	No
	2A1	Cement production process emissions.	CO ₂	2 or 3	Section 24	Yes

Step 2: Apply reporting framework

ANNUAL R	EPORTING													
Category A	reporting on NAE	is												
Provide the	data below for each	h installation th	at is separate	ely registered i	n NAEIS									
	Data Procider UID													
	Date of Submission	1:												
	Year of data:													
difference in	Submission: Including emission estimates alo	ng with its submi	sion.				rd in 10.(1) v	vith full just	ification and	analysis of th	he			
Installation	Sub category/fuel	Activity data	Unit ¹	_	Emission (tonnes/year)									
UID				GHG1			GHG2	GHG3						
				Value	Tier	Ref(*)	Value	Tier	Ref	Value	Tier	Ref		
Total by gas		.,												
	(add additional row (*) provide referen		used, either as	described in the	Technical g	uidance or a	ny other rep	ort or docu	mentation th	at was used.				

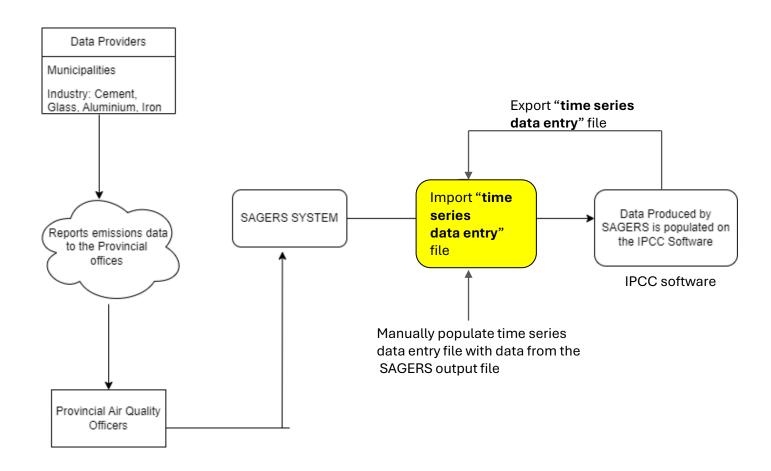




Data Collection: South African Greenhouse Gas Emissions Reporting System (SAGERS)

Step 1: Input Activity Data

Step 2: Select estimation Method (T1-T3)



Data Transfer (SAGERS – IPCC software)

Data collection – IPPU Example (sub-national level)

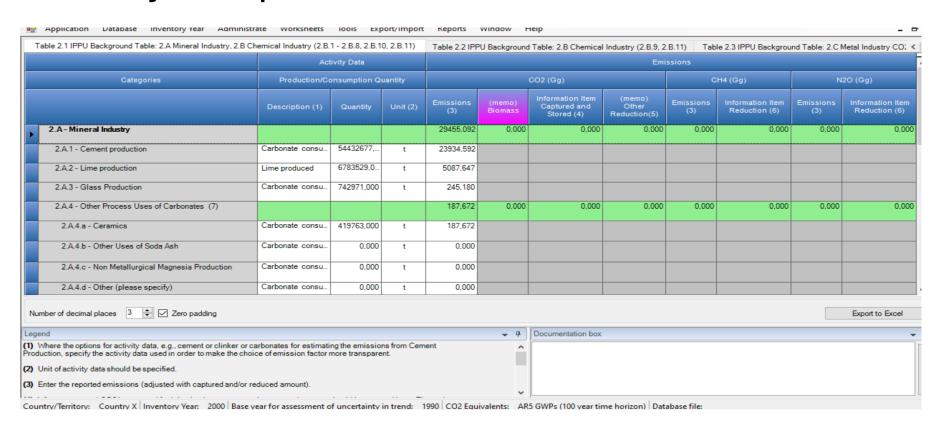
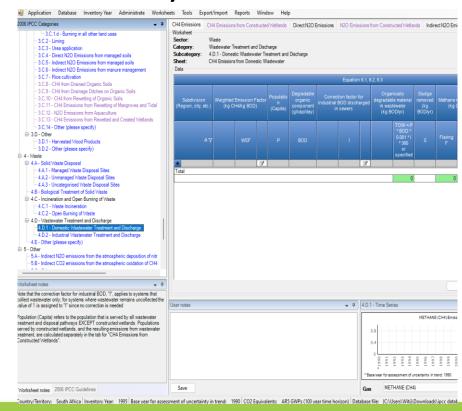



Fig. 1. Locations of some major Industrial Plants in South Africa.

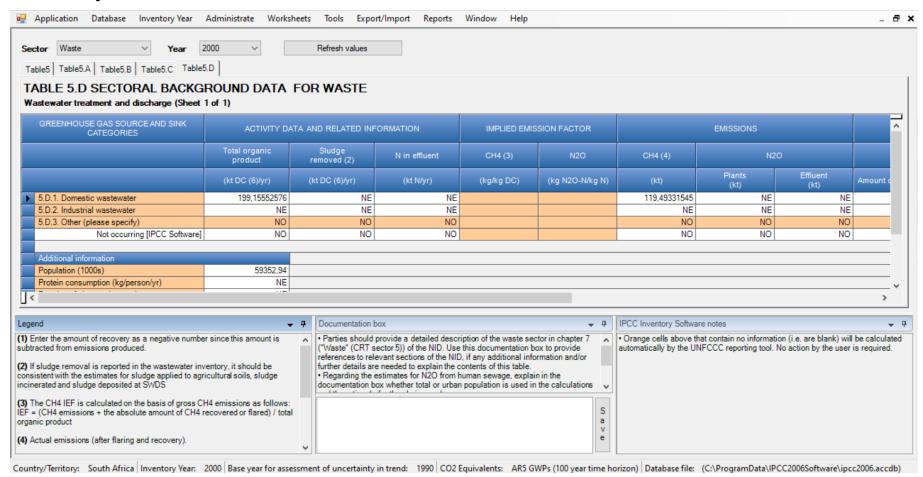
Gauteng Province (sub-national) IPPU Emissions Inventory Compilation

"Sub-division column in the worksheets allows for sub-national disaggregation of data"



Data Collection: Waste sector

SAGERS (National & Provincial data)


IPCC Software (National & subnational data)

Gauteng Province Waste Emissions Inventory Compilation

CRT TABLES

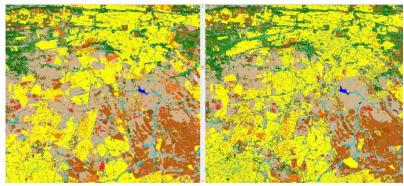
IPPU Sector (Gauteng Province Emissions)

GREENHOUSE GAS SOURCE AND SINK CATEGORIES	CO ₂	CH ₄	N ₂ O	HFCs (1)	PFCs (1)	Unspecified mix of HFCs and PFCs (3)	SF ₆	NF ₃	NO ₁	со	NMVOC	sox	Total GHG emissions (2)
		(kt)		CO ₂ equivalent (kt) (3)				(k	r)			С	
2.A.3. Glass production	191,44												191
2.A.4. Other process uses of carbonates	147,26	NE	NE										14
2.B. Chemical industry	1 265,99	4,23	1,37	NO	NO	NE,NO			0,00	NE	NE	NE	1 74
2.B.1. Ammonia production	209,44	4,06	NE						NE	NE	NE	NE	32
2.B.2. Nitrie acid production			1,37						NE				36
2.B.3. Adipic acid production													
2.B.4. Caprolactam, glyoxal and glyoxylic acid production													
2.B.5. Carbide production	37,38	0,17							NE	NE	NE	NE	4
2.B.6. Titanium dioxide production	813,78)	81
2.B.7. Soda ash production	6,39												
2.B.8. Petrochemical and carbon black production	100,57	0.00							NE	NE	NE	NE	10
2.B.9. Fluorochemical production				NO	NO	NO							1
2.B.10. Other	98,43	0,00	NE			NE,NO			0,00	NE			9
2.C. Metal industry	15 528,54	0,00		NO	125,86	NO			NE	NE	NE	NE	15 65
2.C.1. Iron and steel production	6 307,24	NE							NE	NE	NE	NE	6 30
2.C.2. Ferroalloys production	8 080,65	0,00							NE	NE	NE	NE	8 08
2.C.3. Aluminium production	1 133,48				125,86				NE	NE	NE	NE	1 25
2.C.4. Magnesium production				NO	NO	NO							
2.C.5. Lead production	7,16								NE	NE	NE	NE	
2.C.6. Zine production									NE	NE	NE	NE	
2.C.7. Other				NO	NO	NO							
2.D. Non-energy products from fuels and solvent use (4)	1 124,79	NE	NE						NE	NE	NE	NE	1 12
2.D.1. Lubricant use	515,69	NE	NE						NE	NE	NE	NE	51
2.D.2. Paraffin wax use	609,10	NE	NE						NE	NE	NE	NE	60
2.D.3. Other													
2.E. Electronics industry				NO	NO	NO							7

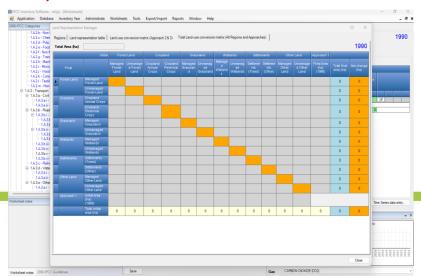
CRT Tables

Waste Sector (Gauteng Province Emissions)

(Sheet 1 of 1)								20 ZAF-CRT-2024-V
(040011011)								
Back to Index								South Afri
GREENHOUSE GAS SOURCE AND SINK CATEGORIES	co;	CH	N ₂ O	NO _s	co	NMVOC	sox	Total GHG emissions
				(kt)				CO ₂ equivalents (kt)
5. Total waste	28,91	625,05	5,93	NE	NE	NE	NE	
S.A. Solid waste disposal		307,00		NE	NE	NE		8 596
5.A.1. Managed waste disposal sites		250,00		NE	NE	NE		8 596
5.A.2. Unmanaged waste disposal sites		NE		NE	NE	NE		3
5.A.3. Uncategorized waste disposal sites		NE		NE	NE	NE		
S.B. Biological treatment of solid waste		61,99	3,00	NE	NE	NE		2 530
5.B.1. Composting		49,98	3,00	NE	NE	NE		2 194
5.B.2. Anserobic digestion at biogas facilities		12,01	NE	NE	NE	NE		336
5.C. Incineration and open burning of waste	28,91	8,69	0,20	NE	NE	NE	NE	325
5.C.1. Waste incineration								
5.C.2. Open burning of waste	28,91	8,69	0,20	NE	NE	NE	NE	325
5.D. Wastewater treatment and discharge		304,37	2,73	NE	NE	NE		10 567
5.D.1. Domestic wastewater		125,25	2,73	NE	NE	NE		5 470
5.D.2. Industrial wastewater		179,13	NE	NE	NE	NE		5 015
5.D.3. Other								
S.E. Other (please specify)								
Memo item: (2)								
5.F.1. Long-term storage of C in waste disposal sites	NE.							
5.F.2. Annual change in total long-term C storage	NE NE							
5.F.3. Annual change in total long-term C storage in HWP waste (4)	NE.							
Total OHO emissious* does not include NO _X , CO, NMVOC and SO _X .								
> Table5 Table5.A Table5.B Table5.C	Table5.D +							1 400



Next step (LULUCF) – subnational inventory

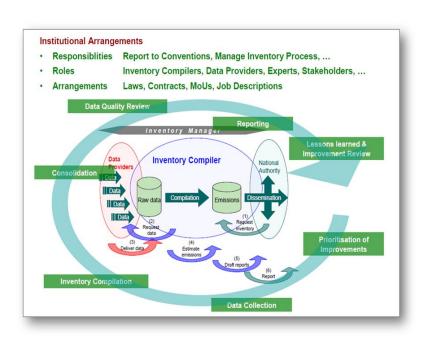

Step 1: Land Use Change assessment

Midrand, Gauteng

Note significant expansion of settlements (yellow) in 2013/14 compared to 1990. Note that the settlement class includes smallholdings, so in this area the expansion of settlements has gone into other land-cover classes as well, such as natural grasslands.

Step 3: AD for the IPPC software

Step 2: sub-national Land Use Change matrix


Gauteng Province change based on the 30m pixe	(change based on							
	1990 Land Cov	er	2014 Land Cover		Change from 1990 to 2014			Class mapping
	Pixels	Hectares	Pixels	Hectares	Pixels	Hectares	%	accuracy (2013)
Indigenous Forest	2	0.18	29	2.61	27	2.43	1350.00	72.6 / 94.64
Thicket /Dense bush	1064404	95796.36	1171881	105469.29	107477	9672.93	10.10	53.74 / 83.64
Woodland/Open bush	1811216	163009.44	2159919	194392.71	348703	31383.27	19.25	60.84 / 54.13
Low shrubland	232843	20955.87	88873	7998.57	-143970	-12957.30	-61.83	70.59 / 61.82
Plantations / Woodlots	472403	42516.27	296695	26702.55	-175708	-15813.72	-37.19	89.3 / 94.35
Cultivated commercial annual crops non-pivot	3897750	350797.50	3697032	332732.88	-200718	-18064.62	-5.15	91.91 / 99.54
Cultivated commercial annual crops pivot	68352	6151.68	223211	20088.99	154859	13937.31	226.56	95.38 / 92.42
Cultivated commercial permanent orchards	11483	1033.47	18527	1667.43	7044	633.96	61.34	92.18 / 95.29
Cultivated commercial permanent vines	0	0.00	0	0.00	0	0.00	0.00	91.61 / 97.26
Cultivated subsistence crops	30416	2737.44	13285	1195.65	-17131	-1541.79	-56.32	89.00 / 94.00
Settlements (incl smallholdings)	3473234	312591.06	3840546	345649.14	367312	33058.08	10.58	93.90 / 98.68
Wetlands	651038	58593.42	572043	51483.87	-78995	-7109.55	-12.13	88.07 / 91.18
Grasslands	6227097	560438.73	5946964	535226.76	-280133	-25211.97	-4.50	84.56 / 69.82
Mines	231305	20817.45	195821	17623.89	-35484	-3193.56	-15.34	92.82 / 98.10
Waterbodies	105313	9478.17	105983	9538.47	670	60.30	0.64	79.64 / 93.31
Bare Ground	12854	1156.86	22768	2049.12	9914	892.26	77.13	98.77 / 97.58
Degraded	106337	9570.33	42466	3821.94	-63871	-5748.39	-60.06	78.69 / 85.95
totals	18396047	1655644	18396043	1655644				User / Producer
			_					class accuracies

Consideration for the IPCC Software

IDEAL ECOSYSTEM WITH IPCC SOFTWARE AT THE CENTRE

Key messages

- 1. Create a data collection module within the IPCC software (structure already in place);
- 2. This can be achieved by enabling wide access of the database with a web application, allowing multiple stakeholders to enter the data through the web and then using the software to make GHG estimates and compile the CRTs;
- 3. Good that the software allows for sub-division of data input (helpful for sub-national disaggregation of data).
- 4. Creation of reports at sub-division level;
- 5. Allow a QA/QC of the CTR tables on the software

THANK YOU!

GHG INVENTORY AND SYSTEMS

Department of Environment, Forestry and Fisheries

Email: Ghgreporting@dffe.gov.za

Website: http://www.dffe.gov.za

Address: The Environment House, 473 Steve Biko Road, Arcadia, Pretoria, 0083

hank You

